

Eaton Primary School Science Knowledge Organiser

Unit of work Forces and Magnets

Year group

Prior learning

- The shape of some materials can be changed when they are **stretched**, **twisted**, **bent** and **squashed**.
- Know how some toys move.
- That when **forces** are applied to an object they allow them to move or stop moving.

Knowledge/Skills

What are forces?	Forces are pushes and pulls. These forces change the mo on of an object. They will make it start to move or speed up, slow it down or even make it stop. For example, when a cyclist pushes down on the pedals of a bike, it begins to move. The harder the cyclist pedals, the faster the bike moves. When the cyclist pulls the brakes, the bike slows down and eventually stops.			
How do different surfaces affect the motion of an object?	 Forces act in opposite directions to each other. When an object moves across a surface, friction acts as an opposite force. Friction is a force that holds back the motion of an object. Some surfaces create more friction than others which means that objects move across them slower. gross gravel carpet concrete sand wood On a ramp, the force that causes the object to move downwards is gravity. Objects move differently depending on the surface of the object itself and the surface of the ramp. 			
How do magnets work? Which materials are	 Magnets produce an area of force around them called a magnetic field. When objects enter this magnetic field, they will be attracted to or repelled from the magnet if they are magnetic. When magnets repel, the push each other away When magnets attract, they pull together. Objects that are magnetic, are attracted to magnets. Iron and steel are magnetic. Aluminium and copper are non-magnetic. 			
How do magnetic poles work?	 The ends of a magnet are called poles. One end is called the north pole and the other end is called the south pole. Opposite poles attract, similar poles repel. If you place two magnets so the south pole of one faces the north pole of the other, the magnets will move towards each other. This is called attraction. If you place the magnets so that two of the same poles face each other, the magnets will move away from each other. They are repelling each other. If you place the magnets are poles face each other. They are repelling each other. 			

National Curriculum

Pupils should be taught to:

- Compare how things move on different surfaces
- Notice that some forces need contact between two objects, but magnetic forces can act at a distance
- Observe how magnets attract or repel each other and attract some materials and not others

3

- Compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials
- Describe magnets as having two poles
- Predict whether two magnets will attract or repel each other, depending on which poles are facing.

Vocabulary	and definitions
Word	Definition
attract	If one object attracts another object, it causes the
	second object to move towards it
bendy	an object that bends easily into a curved shape
friction	the resistance of motion when there is contact
	between two surfaces
force	the pulling or pushing effect that something has on
	something else
gravity	the force which causes things to drop to the ground
magnet	a piece of iron or other material which attracts
	magnetic materials towards it
magnetic	an area around a magnet , or something functioning as
field	a magnet , in which the magnet's power to attract
	things is felt
metal	a hard substance such as iron, steel, gold, or lead
motion	the activity of changing position or moving from one
	place to another
non-	an object that is not magnetic
magnetic	
opposite	Opposite is used to describe things of the same kind
	which are completely different in a particular way. For
	example, north and south are opposite directions
position	The position of someone or something is the place
	where they are in relation to other things
pull	When you pull something, you hold it firmly and use
	force in order to move it towards you or away from its
	previous position
push	When you push something, you use force to make it
	move away from you or away from its previous
	position
repel	When a magnetic pole repels another magnetic pole,
	it gives out a force that pushes the other pole away
resistance	a force which slows down a moving object or vehicle
squash	pressed or crushed with such force that something
	loses its shape
stretchy	slightly elastic
surface	the flat top part of something or the outside of it
twist	turn something to make a spiral shape

Investigate!

- Investigate the amount of **friction** created by different **surfaces**. Use measures (such as length and me) to show how far or fast an object travels.
- Compare how different things move and group them.
- Observe how a magnetic field attracts iron filings by using a bar magnet.
- Investigate how magnets are used in everyday life.
- Investigate which materials are magnetic and sort between objects that are magnetic and those that are non-magnetic.
- Investigate if the size of a **magnet** affects how strong it is (using chains of paper clips of varying lengths)
- Investigate if all **metals** are **magnetic**.
- Observe what happens when **magnets** with similar poles are placed next to each. Repeat this for when the poles are different.

Significant people

Michael Faraday was an English scientist. In 1831, he discovered electromagnetic induction. This was a very important discovery for the future of science and technology.

Question 1: The pulling or pushing effect that something has on something else can be best described as a	Start of unit:	End of unit:	Question 2: Which force pulls objects towards the ground? resistance magnetism gravity	Start of unit:	End of unit:
--	-------------------	-----------------	--	-------------------	-----------------

Question 3: Which of these surfaces would create the most friction for a cyclist riding their bike?	Start of unit:	End of unit:
sand		
concrete		
polished wood		

Question 4: What is motion?	Start of unit:	End of unit:
Changing size		
Holding still		
Changing shape		
Moving from one place to another		

Question 5: Which force acts as resistance when one object moves		
against another?	Start of	End of
	unit:	unit:
friction		
magnetism		
gravity		

Question 7: How can you test which materials are magnetic?	Start of unit:	End of unit:
see which objects are attracted to a		
magnet		
see which objects are repelled by a		
magnet		
see which objects are not affected		
by a magnet at all.		

Question 6: You design an experiment		
Question 0. Tou design an experiment		
to see how far an object moves on	a	
ramps of different surfaces. What must	Start of	End of
you do to keep the test fair?	unit:	unit:
keep the object the same for all ramps		
the ramps must all be the same length		
the object must have the same starting		
point before it starts moving		
all of the above		

Ouestion 8: For each of these diagrams, state whether these magnets will attract or repel each		
other.	Start of	End of
	unit	unit
	unit.	unnt.
	1 1	i

